- homogeneous ideal
- мат.однородный идеал
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Homogeneous coordinate ring — In algebraic geometry, the homogeneous coordinate ring R of an algebraic variety V given as a subvariety of projective space of a given dimension N is by definition the quotient ring R = K[X0, X1, X2, ..., XN]/I where I is the homogeneous ideal… … Wikipedia
Homogeneous (mathematics) — In mathematics, homogeneous may refer to:*Homogeneous polynomial, in algebra *Homogeneous function *Homogeneous equation, in particular: Homogeneous differential equation *Homogeneous system of linear equations, in linear algebra *Homogeneous… … Wikipedia
Homogeneous coordinate system — A homogeneous coordinate system is a coordinate system in which there is an extra dimension, used most commonly in computer science to specify whether the given coordinates represent a vector (if the last coordinate is zero) or a point (if the… … Wikipedia
Homogeneous charge compression ignition — Thermodynamics … Wikipedia
homogeneous atmosphere — i. A hypothetical atmosphere in which the gaseous composition is constant with height. The lapse rate of temperature in such an atmosphere is known as the autoconvective lapse rate and is equal to approximately 15°F/1000 ft (3.4°C/100 m). For a… … Aviation dictionary
ideal solution — ▪ chemistry homogeneous mixture of substances that has physical properties linearly related to the properties of the pure components. The classic statement of this condition is Raoult s law, which is valid for many highly dilute solutions… … Universalium
Homogeneous charge compression ignition — Moteur HCCI Pour les articles homonymes, voir HCCI. Le moteur Homogeneous Charge Compression Ignition, ou HCCI, est un type de moteur à combustion interne dans lequel le mélange air carburant est mélangé de la manière la plus homogène possible… … Wikipédia en Français
Zariski topology — In algebraic geometry, the Zariski topology is a particular topology chosen for algebraic varieties that reflects the algebraic nature of their definition. It is due to Oscar Zariski and took a place of particular importance in the field around… … Wikipedia
Proj construction — In algebraic geometry, Proj is a construction analogous to the spectrum of a ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. It is a fundamental tool in scheme … Wikipedia
Graded algebra — In mathematics, in particular abstract algebra, a graded algebra is an algebra over a field (or commutative ring) with an extra piece of structure, known as a gradation (or grading ). Graded rings A graded ring A is a ring that has a direct sum… … Wikipedia
Twisted cubic — In mathematics, a twisted cubic is a smooth, rational curve C of degree three in projective 3 space mathbb{P}^3. It is a fundamental example of a skew curve. It is essentially unique, up to projective transformation ( the twisted cubic,… … Wikipedia